Monte Carlo Simulation Integration Analysis
Current State
Implementation: ✅ Advanced but Unused
Core Components:
- MonteCarloEngine (
/src/alpha_pulse/risk/monte_carlo_engine.py
)- Multiple stochastic processes (GBM, Jump Diffusion, Heston, Variance Gamma)
- Variance reduction techniques
- GPU acceleration support
- Greeks calculation
- SimulationService (
/src/alpha_pulse/services/simulation_service.py
)- Portfolio simulation orchestration
- Stress testing scenarios
- Model backtesting
- Result caching and parallelization
Integration: ❌ 0% Used in Decision Making
Complete Isolation:
- Not used in risk reporting
- Portfolio optimization ignores scenarios
- No API endpoints
- Stress testing disconnected
- Zero impact on trading decisions
Critical Integration Gaps
1. Risk Reporting Gap
Current: Risk reports show basic VaR only Impact:
- Incomplete risk picture
- No tail risk visibility
- Missing scenario analysis
- Regulatory compliance issues
Required Integration:
# In risk_reporter.py generate_risk_report()
async def generate_risk_report(self, portfolio):
# Add Monte Carlo simulation
simulation_report = await self.simulation_service.generate_simulation_report(
portfolio,
horizons=[1, 5, 20], # 1 day, 1 week, 1 month
confidence_levels=[0.95, 0.99],
scenarios=10000
)
report = {
"traditional_metrics": self._calculate_traditional_metrics(portfolio),
"monte_carlo_var": simulation_report.var_estimates,
"monte_carlo_cvar": simulation_report.cvar_estimates,
"tail_risk_analysis": simulation_report.tail_statistics,
"scenario_analysis": simulation_report.scenario_results,
"stress_test_results": simulation_report.stress_test_results
}
return RiskReport(**report)
2. Portfolio Optimization Gap
Current: Optimization uses historical data only Impact:
- Fragile to future scenarios
- No robustness testing
- Overfits to past data
- Surprises in new regimes
Required Integration:
# In portfolio_optimizer.py optimize()
async def optimize_with_scenarios(self, portfolio, constraints):
# Generate future scenarios
scenarios = await self.simulation_service.generate_portfolio_scenarios(
portfolio,
num_scenarios=1000,
horizon=20, # days
process_type="regime_switching"
)
# Robust optimization across scenarios
optimal_weights = self._solve_robust_optimization(
scenarios,
constraints,
objective="worst_case_sharpe" # or "cvar_minimization"
)
# Test robustness
backtest_results = await self.simulation_service.backtest_strategy(
optimal_weights,
scenarios
)
return OptimizationResult(
weights=optimal_weights,
expected_performance=backtest_results.summary_stats,
scenario_analysis=backtest_results.scenario_breakdown
)
3. API Endpoint Gap
Current: No simulation endpoints Impact:
- Cannot run what-if analysis
- No stress testing interface
- Hidden simulation capabilities
- No user scenario exploration
Required Endpoints:
# In new /api/routers/simulation.py
@router.post("/portfolio-simulation")
async def run_portfolio_simulation(request: SimulationRequest):
"""Run Monte Carlo simulation for portfolio"""
results = await simulation_service.simulate_portfolio(
request.portfolio,
request.horizons,
request.num_scenarios,
request.process_type
)
return results
@router.post("/stress-test")
async def run_stress_test(request: StressTestRequest):
"""Run stress test scenarios"""
results = await simulation_service.run_stress_tests(
request.portfolio,
request.scenarios # e.g., "2008_crisis", "covid_crash", "custom"
)
return results
@router.post("/option-pricing")
async def price_options(request: OptionRequest):
"""Price options using Monte Carlo"""
greeks = await simulation_service.calculate_option_greeks(
request.underlying,
request.strike,
request.expiry,
request.option_type
)
return greeks
@router.post("/what-if")
async def what_if_analysis(request: WhatIfRequest):
"""Run custom what-if scenarios"""
results = await simulation_service.run_custom_scenario(
request.portfolio,
request.market_shocks,
request.correlation_changes
)
return results
4. Decision Integration Gap
Current: Decisions ignore simulation insights Impact:
- Blind to tail risks
- No scenario-based sizing
- Reactive not proactive
- Surprises cost money
Required Integration:
# In risk_manager.py evaluate_trade()
async def evaluate_trade_with_simulation(self, trade):
# Simulate trade impact
simulation_result = await self.simulation_service.simulate_trade_impact(
self.portfolio,
trade,
scenarios=1000
)
# Check tail risk
if simulation_result.tail_risk_increase > self.max_tail_risk:
return RiskDecision(
approved=False,
reason=f"Trade increases tail risk by {simulation_result.tail_risk_increase:.1%}"
)
# Check scenario performance
worst_case = simulation_result.get_percentile_outcome(5) # 5th percentile
if worst_case.portfolio_loss > self.max_scenario_loss:
return RiskDecision(
approved=False,
reason=f"Worst case loss {worst_case.portfolio_loss:.1%} exceeds limit"
)
return RiskDecision(
approved=True,
simulation_metrics=simulation_result.summary
)
5. Stress Testing Gap
Current: Basic stress test disconnected from Monte Carlo Impact:
- Limited scenario coverage
- No probabilistic outcomes
- Cannot test complex scenarios
- Regulatory inadequacy
Required Integration:
# Merge stress_tester.py with simulation
class UnifiedStressTester:
def __init__(self, simulation_service):
self.simulation = simulation_service
async def run_comprehensive_stress_test(self, portfolio):
# Historical scenarios
historical = await self.simulation.run_stress_tests(
portfolio,
scenarios=["2008_crisis", "covid_crash", "dot_com_burst"]
)
# Hypothetical scenarios
hypothetical = await self.simulation.run_custom_scenarios(
portfolio,
[
{"name": "rates_spike", "shocks": {"rates": +0.03}},
{"name": "liquidity_crisis", "shocks": {"liquidity": -0.5}},
{"name": "correlation_breakdown", "correlation_override": 0.9}
]
)
# Reverse stress testing
breaking_point = await self.simulation.find_breaking_point(
portfolio,
target_loss=0.25 # Find scenario causing 25% loss
)
return StressTestReport(
historical_scenarios=historical,
hypothetical_scenarios=hypothetical,
breaking_points=breaking_point
)
Business Impact
Current State (Unused)
- Risk Visibility: Basic metrics only
- Scenario Planning: None
- Stress Testing: Limited
- Decision Quality: Historical-based only
Potential State (Integrated)
- Complete Risk Picture: Full distribution of outcomes
- Proactive Planning: Test strategies across scenarios
- Robust Decisions: Scenario-aware position sizing
- Regulatory Compliance: Advanced risk metrics
Annual Value
- Avoided Losses: $1-2M from better tail risk management
- Improved Decisions: $500K-1M from scenario planning
- Regulatory Compliance: Avoid fines/restrictions
- Total: $1.5-3M annually
Integration Architecture
graph TD
A[Monte Carlo Engine] --> B[Simulation Service]
B --> C[Risk Reporting]
B --> D[Portfolio Optimization]
B --> E[Stress Testing]
B --> F[Trade Evaluation]
G[API Layer] --> B
C --> H[Risk Dashboard]
D --> I[Rebalancing]
E --> J[Compliance Reports]
F --> K[Position Sizing]
Implementation Roadmap
Phase 1: Service Activation (1 day)
- Start SimulationService in API
- Configure simulation parameters
- Test basic functionality
Phase 2: Risk Integration (3 days)
- Add Monte Carlo to risk reports
- Integrate with trade evaluation
- Create simulation-based alerts
Phase 3: API Development (2 days)
- Create simulation endpoints
- Add stress test interface
- Build what-if analysis tools
Phase 4: Decision Integration (3 days)
- Connect to portfolio optimization
- Add scenario-based sizing
- Integrate stress test results
Configuration Schema
monte_carlo:
enabled: true
default_scenarios: 10000
default_horizon: 20 # days
processes:
default: "gbm"
regime_aware: "regime_switching"
fat_tails: "variance_gamma"
variance_reduction:
antithetic: true
control_variates: true
importance_sampling: false
gpu:
enabled: true
batch_size: 100000
caching:
enabled: true
ttl: 3600 # 1 hour
risk_metrics:
var_levels: [0.95, 0.99]
cvar_levels: [0.95, 0.99]
stress_scenarios: ["2008", "covid", "custom"]
Success Metrics
- Simulation Usage: Daily simulation runs
- Risk Accuracy: Predicted vs actual tail events
- Decision Impact: % of trades using simulation
- Stress Test Coverage: Scenarios tested monthly
- User Engagement: What-if analyses performed
Conclusion
The Monte Carlo simulation system is a powerful analytical engine running in neutral. It’s like having a flight simulator that’s never used for pilot training. With 9 days of integration work, we can transform static risk analysis into dynamic, forward-looking risk management that could prevent millions in losses while enabling more confident decision-making.