AI Hedge Fund Technical Documentation

1. Overview and Purpose

The AI Hedge Fund project is an advanced algorithmic trading system that combines multiple AI agents, sophisticated risk management, and portfolio optimization to make data-driven investment decisions in cryptocurrency markets.

Key Objectives

Value Proposition

2. System Architecture

High-Level Architecture

flowchart TB
    subgraph Data Layer
        MD[Market Data]
        FD[Fundamental Data]
        SD[Sentiment Data]
        TD[Technical Data]
    end

    subgraph Agent Layer
        TA[Technical Agent]
        FA[Fundamental Agent]
        SA[Sentiment Agent]
        VA[Value Agent]
        AA[Activist Agent]
    end

    subgraph Risk Layer
        RM[Risk Manager]
        PS[Position Sizing]
        PE[Portfolio Exposure]
        SL[Stop Loss]
    end

    subgraph Portfolio Layer
        PM[Portfolio Manager]
        PO[Portfolio Optimizer]
        RB[Rebalancer]
    end

    subgraph Execution Layer
        EB[Execution Broker]
        MT[Monitor & Track]
    end

    MD --> TA
    FD --> FA
    SD --> SA
    TD --> VA
    FD --> AA

    TA & FA & SA & VA & AA --> RM
    RM --> PS
    RM --> PE
    RM --> SL
    
    PS & PE & SL --> PM
    PM --> PO
    PM --> RB
    
    PO & RB --> EB
    EB --> MT

Component Interactions

sequenceDiagram
    participant DM as Data Manager
    participant AM as Agent Manager
    participant RM as Risk Manager
    participant PM as Portfolio Manager
    participant EB as Execution Broker

    DM->>AM: Market Data Updates
    activate AM
    AM->>AM: Generate Signals
    AM->>RM: Trading Signals
    deactivate AM
    
    activate RM
    RM->>RM: Evaluate Risk
    RM->>RM: Size Positions
    RM->>PM: Valid Trades
    deactivate RM
    
    activate PM
    PM->>PM: Optimize Portfolio
    PM->>PM: Check Rebalancing
    PM->>EB: Execute Orders
    deactivate PM
    
    activate EB
    EB->>EB: Place Orders
    EB->>PM: Execution Results
    deactivate EB

3. Code Structure

Project Organization

alpha_pulse/
├── agents/                 # Trading agents implementation
├── api/                   # API endpoints and routing
├── backtesting/          # Backtesting framework
├── config/               # Configuration files
├── data_pipeline/        # Data ingestion and processing
├── examples/             # Example scripts and demos
├── execution/            # Order execution and broker interfaces
├── features/             # Feature engineering
├── hedging/              # Hedging strategies
├── models/               # ML models
├── monitoring/           # Performance monitoring
├── portfolio/            # Portfolio management
├── risk_management/      # Risk controls
└── tests/                # Unit and integration tests

Core Classes Relationship

classDiagram
    class AgentManager {
        +List~Agent~ agents
        +initialize()
        +generate_signals()
    }
    
    class RiskManager {
        +PositionSizer sizer
        +RiskAnalyzer analyzer
        +evaluate_trade()
        +calculate_position_size()
    }
    
    class PortfolioManager {
        +Optimizer optimizer
        +Strategy strategy
        +rebalance_portfolio()
        +get_portfolio_data()
    }
    
    class DataManager {
        +List~Provider~ providers
        +get_market_data()
        +process_data()
    }
    
    AgentManager --> RiskManager : Signals
    RiskManager --> PortfolioManager : Valid Trades
    DataManager --> AgentManager : Market Data
    PortfolioManager --> Broker : Orders

4. Core Logic and Algorithms

Technical Agent Signal Generation

def generate_technical_signal(self, data: pd.DataFrame) -> Signal:
    # Calculate technical indicators
    trend_score = self._calculate_trend_score(data)
    momentum_score = self._calculate_momentum_score(data)
    volatility_score = self._calculate_volatility_score(data)
    volume_score = self._calculate_volume_score(data)
    pattern_score = self._calculate_pattern_score(data)
    
    # Weight and combine scores
    technical_score = (
        trend_score * 0.30 +      # Trend following
        momentum_score * 0.20 +   # Price momentum
        volatility_score * 0.20 + # Volatility regime
        volume_score * 0.15 +     # Volume analysis
        pattern_score * 0.15      # Chart patterns
    )
    
    # Generate signal based on score
    if abs(technical_score) > self.min_threshold:
        direction = SignalDirection.BUY if technical_score > 0 else SignalDirection.SELL
        confidence = min(abs(technical_score), self.max_confidence)
        return Signal(direction=direction, confidence=confidence)
    
    return None

Position Sizing Algorithm

def calculate_position_size(self, portfolio_value: float, signal: Signal) -> float:
    # Kelly Criterion for base position size
    win_rate = self._calculate_win_rate(signal.symbol)
    avg_win = self._calculate_avg_win(signal.symbol)
    avg_loss = self._calculate_avg_loss(signal.symbol)
    
    kelly_fraction = (win_rate * avg_win - (1 - win_rate) * avg_loss) / avg_win
    kelly_fraction = min(kelly_fraction, self.max_size_pct)
    
    # Adjust by signal confidence and volatility
    confidence_adj = signal.confidence / self.max_confidence
    vol_adj = self._calculate_volatility_adjustment(signal.symbol)
    
    # Final position size
    position_size = portfolio_value * kelly_fraction * confidence_adj * vol_adj
    return min(position_size, portfolio_value * self.max_size_pct)

5. Workflow Examples

Trading Decision Flow

flowchart TD
    A[Market Data] --> B[Data Processing]
    B --> C[Feature Engineering]
    C --> D[Agent Analysis]
    D --> E{Signal Generation}
    E -->|No Signal| F[Hold Position]
    E -->|Generate Signal| G[Risk Evaluation]
    G -->|Pass| H[Position Sizing]
    G -->|Fail| F
    H --> I[Portfolio Check]
    I -->|Within Limits| J[Execute Trade]
    I -->|Exceeds Limits| K[Adjust Size]
    K --> J
    J --> L[Monitor Position]

6. Deployment and Usage

Environment Setup

  1. Clone repository and install dependencies:
    git clone https://github.com/your-org/alpha-pulse.git
    cd alpha-pulse
    pip install -r requirements.txt
    
  2. Configure environment variables:
    export ALPHA_PULSE_ENV=production
    export ALPHA_PULSE_CONFIG=/path/to/config.yaml
    
  3. Initialize database:
    python scripts/init_db.py
    

Running the System

  1. Start the data pipeline:
    python -m alpha_pulse.data_pipeline
    
  2. Launch the trading engine:
    python -m alpha_pulse.main
    
  3. Monitor performance:
    python -m alpha_pulse.monitoring
    

7. Risk Management and Validation

Risk Controls

Validation Process

  1. Historical Backtesting
  2. Paper Trading Validation
  3. Small-Scale Live Testing
  4. Gradual Capital Allocation

8. Further Development

Planned Enhancements

  1. Additional Data Sources
    • On-chain metrics
    • Order book data
    • Social media sentiment
  2. Advanced Analytics
    • Deep learning models
    • Reinforcement learning
    • Natural language processing
  3. Infrastructure Improvements
    • Real-time processing
    • Distributed computing
    • Cloud deployment

Performance Optimizations

9. Appendices

Risk Metrics Calculation

flowchart LR
    subgraph Portfolio Metrics
        PV[Portfolio Value]
        DD[Drawdown]
        SR[Sharpe Ratio]
    end
    
    subgraph Position Metrics
        PS[Position Size]
        PE[Position Exposure]
        PL[P&L]
    end
    
    subgraph Risk Limits
        MP[Max Position]
        ML[Max Leverage]
        MD[Max Drawdown]
    end
    
    PS --> PE
    PE --> PV
    PL --> DD
    DD --> MD
    PS --> MP
    PE --> ML
    PL --> SR

References

  1. Modern Portfolio Theory
  2. Kelly Criterion
  3. Risk-Adjusted Position Sizing
  4. Technical Analysis
  5. Machine Learning in Finance