AI Hedge Fund User Guide

Getting Started

Welcome to the AI Hedge Fund system - a comprehensive algorithmic trading platform combining multiple AI agents, risk management, and portfolio optimization for cryptocurrency markets.

Prerequisites

Installation

  1. Clone the repository:
    git clone https://github.com/your-org/alpha-pulse.git
    cd alpha-pulse
    
  2. Install Python dependencies:
    pip install -r requirements.txt
    
  3. Install dashboard dependencies:
    cd dashboard
    npm install
    cd ..
    
  4. Configure your API credentials:
    cp src/alpha_pulse/exchanges/credentials/example.yaml src/alpha_pulse/exchanges/credentials/credentials.yaml
    # Edit credentials.yaml with your exchange API keys
    
  5. Run the setup script:
    ./setup.sh
    

System Components

1. Trading Agents

The system uses five specialized AI agents:

Agent Purpose Configuration
Technical Chart pattern analysis config/agents/technical_agent.yaml
Fundamental Economic data analysis config/agents/fundamental_agent.yaml
Sentiment News and social media analysis config/agents/sentiment_agent.yaml
Value Long-term value assessment config/agents/value_agent.yaml
Activist Market-moving event detection config/agents/activist_agent.yaml

2. Risk Management

Risk controls are configured in config/risk_management/risk_config.yaml:

3. Portfolio Management

Portfolio settings are in config/portfolio/portfolio_config.yaml:

4. Dashboard

The dashboard provides real-time monitoring and control:

Usage Guides

Running the System

For a complete demo with all fixes applied:

./run_fixed_demo.sh

For individual components:

# API only
python src/scripts/run_api.py

# Dashboard only
cd dashboard && npm start

# Trading engine
python -m alpha_pulse.main

Backtesting Strategies

  1. Configure your backtest in examples/trading/demo_backtesting.py
  2. Run the backtest:
    python examples/trading/demo_backtesting.py
    
  3. View results in the reports/ directory

Adding Custom Agents

  1. Create a new agent class in src/alpha_pulse/agents/
  2. Implement the Agent interface defined in src/alpha_pulse/agents/interfaces.py
  3. Register your agent in src/alpha_pulse/agents/factory.py
  4. Add configuration in config/agents/your_agent.yaml

Customizing Risk Controls

  1. Edit config/risk_management/risk_config.yaml
  2. Adjust parameters like max position size, drawdown limits, etc.
  3. For advanced customization, extend RiskManager in src/alpha_pulse/risk_management/manager.py

Troubleshooting

Common Issues

API Connection Errors

Portfolio Rebalancing Errors

Dashboard Connection Issues

Support

For additional support:

Advanced Configuration

Custom Data Sources

To add a new data source:

  1. Implement the DataProvider interface in src/alpha_pulse/data_pipeline/providers/
  2. Register your provider in src/alpha_pulse/data_pipeline/manager.py
  3. Configure your data source in config/data_pipeline_config.yaml

Performance Optimization

For large-scale deployments:

Logging and Monitoring