GPU Acceleration Utilization Analysis
Current State
Implementation: ā Complete Infrastructure
Comprehensive GPU Stack:
- GPUService (
/src/alpha_pulse/ml/gpu/gpu_service.py
)- Unified interface for GPU operations
- Model training and inference
- Technical indicator calculations
- Portfolio optimization
- GPU Components
- GPUManager: Resource allocation and monitoring
- CUDAOperations: Fast technical indicators
- GPUBatchProcessor: Optimized batch inference
- GPUMemoryManager: Memory pooling
- GPU Models: Optimized ML implementations
Integration: ā <5% Utilized
Minimal Usage:
- Monte Carlo uses raw CuPy (not GPUService)
- RL training uses PyTorch GPU (not GPUService)
- Everything else runs on CPU
- GPU infrastructure sitting idle
Critical Integration Gaps
1. Trading Agent Gap
Current: Agents calculate indicators on CPU Impact:
- 10-100x slower calculations
- Delayed signal generation
- Limited indicator complexity
- Wasted GPU resources
Required Integration:
# In technical_agent.py
class GPUAcceleratedTechnicalAgent(TechnicalAgent):
def __init__(self, config):
super().__init__(config)
self.gpu_service = GPUService()
self.gpu_available = self.gpu_service.initialize()
async def calculate_indicators(self, market_data):
if self.gpu_available:
# GPU-accelerated calculation
indicators = await self.gpu_service.calculate_technical_indicators(
market_data,
indicators=['RSI', 'MACD', 'BB', 'ATR', 'EMA'],
windows=[14, 26, 20, 14, [12, 26, 9]]
)
# Process 100x more data points
extended_indicators = await self.gpu_service.batch_calculate(
market_data,
lookback=1000, # vs 100 on CPU
indicators=['correlation_matrix', 'regime_detection']
)
else:
# Fallback to CPU
indicators = self._calculate_cpu_indicators(market_data)
return indicators
2. Real-time Inference Gap
Current: All inference on CPU Impact:
- Higher latency
- Limited model complexity
- Canāt run ensemble models
- Bottleneck in signal generation
Required Integration:
# In model_inference_service.py
class GPUInferenceService:
def __init__(self):
self.gpu_service = GPUService()
self.batch_processor = GPUBatchProcessor()
async def batch_predict(self, features_batch):
# Transfer to GPU
gpu_batch = self.batch_processor.prepare_batch(features_batch)
# Run multiple models in parallel on GPU
results = await asyncio.gather(
self.gpu_service.run_model("lstm_predictor", gpu_batch),
self.gpu_service.run_model("transformer_predictor", gpu_batch),
self.gpu_service.run_model("ensemble_model", gpu_batch)
)
# Ensemble on GPU
final_predictions = self.batch_processor.ensemble_predictions(results)
return final_predictions.to_cpu()
3. Backtesting Acceleration Gap
Current: CPU-bound backtesting Impact:
- Days instead of hours
- Limited parameter search
- Canāt test complex strategies
- Delayed strategy validation
Required Integration:
# In distributed_backtester.py
class GPUDistributedBacktester:
async def run_backtest_gpu(self, strategy, data, param_grid):
# Initialize GPU cluster
gpu_cluster = await self.gpu_service.create_cluster(
num_gpus=4,
memory_per_gpu="16GB"
)
# Distribute data across GPUs
data_shards = self.gpu_service.shard_data(data, num_shards=4)
# Parallel GPU execution
futures = []
for params in param_grid:
for shard in data_shards:
future = gpu_cluster.submit(
self._gpu_backtest_worker,
strategy, shard, params
)
futures.append(future)
# Gather results
results = await asyncio.gather(*futures)
# GPU-accelerated metrics calculation
metrics = await self.gpu_service.calculate_backtest_metrics(results)
return BacktestReport(results=results, metrics=metrics)
4. Portfolio Optimization Gap
Current: CPU-based optimization Impact:
- Slow optimization cycles
- Limited asset universe
- Simple constraints only
- Suboptimal allocations
Required Integration:
# In portfolio_optimizer.py
class GPUPortfolioOptimizer:
async def optimize_gpu(self, returns, constraints):
# Transfer to GPU
gpu_returns = self.gpu_service.to_gpu(returns)
# GPU-accelerated covariance
cov_matrix = await self.gpu_service.calculate_covariance(
gpu_returns,
method="ledoit_wolf"
)
# Run multiple optimization methods in parallel
optimizations = await asyncio.gather(
self.gpu_service.optimize_mean_variance(gpu_returns, cov_matrix),
self.gpu_service.optimize_hrp(gpu_returns, cov_matrix),
self.gpu_service.optimize_black_litterman(gpu_returns, views),
self.gpu_service.optimize_risk_parity(gpu_returns, cov_matrix)
)
# Ensemble optimization results
final_weights = self.gpu_service.ensemble_weights(
optimizations,
method="adaptive"
)
return final_weights.to_cpu()
5. API Monitoring Gap
Current: No GPU visibility Impact:
- Unknown GPU utilization
- Canāt optimize usage
- No cost tracking
- Debugging difficulties
Required Endpoints:
# In new /api/routers/gpu.py
@router.get("/status")
async def get_gpu_status():
"""Get GPU availability and specs"""
return {
"available": gpu_service.is_available(),
"devices": gpu_service.get_device_info(),
"memory": gpu_service.get_memory_status(),
"compute_capability": gpu_service.get_compute_capability()
}
@router.get("/utilization")
async def get_gpu_utilization():
"""Real-time GPU utilization metrics"""
return {
"gpu_usage": gpu_service.get_utilization(),
"memory_usage": gpu_service.get_memory_usage(),
"active_operations": gpu_service.get_active_operations(),
"queue_length": gpu_service.get_queue_length()
}
@router.post("/benchmark")
async def run_gpu_benchmark(operation: str):
"""Benchmark GPU vs CPU performance"""
gpu_time = await gpu_service.benchmark_operation(operation, device="gpu")
cpu_time = await gpu_service.benchmark_operation(operation, device="cpu")
return {
"operation": operation,
"gpu_time": gpu_time,
"cpu_time": cpu_time,
"speedup": cpu_time / gpu_time
}
Business Impact
Current State (CPU-Only)
- Latency: 50-500ms per calculation
- Throughput: Limited backtesting
- Complexity: Simple models only
- Cost: High CPU usage
Potential State (GPU-Accelerated)
- 10-100x Faster: Calculations in microseconds
- Complex Models: Run transformers in real-time
- Massive Backtests: Test 1000s of parameters
- Cost Efficiency: Lower total compute cost
Annual Value
- Faster Signals: $300-500K from reduced latency
- Better Models: $500K-1M from complex model usage
- Strategy Discovery: $200-400K from extensive backtesting
- Total: $1-1.9M annually
GPU Utilization Roadmap
Phase 1: Agent Integration (2 days)
- Wire GPU indicators to technical agent
- Test performance improvement
- Add fallback mechanisms
Phase 2: Inference Pipeline (3 days)
- Create GPU inference service
- Migrate models to GPU
- Implement batching logic
Phase 3: Backtesting (3 days)
- GPU-enable distributed backtester
- Optimize data transfer
- Parallelize across GPUs
Phase 4: Monitoring (2 days)
- Add GPU API endpoints
- Create utilization dashboard
- Implement cost tracking
Configuration
gpu:
enabled: true
device_selection: "auto" # or specific GPU ID
memory_management:
pool_size: "8GB"
growth_mode: "dynamic"
operations:
batch_size: 1024
precision: "float32" # or "float16" for speed
fallback:
cpu_fallback: true
min_speedup: 2.0 # Use GPU only if 2x faster
monitoring:
track_utilization: true
alert_on_oom: true
Success Metrics
- Speedup Factor: GPU vs CPU performance ratio
- GPU Utilization: Average % usage
- Latency Reduction: Signal generation time
- Throughput Increase: Backtests per hour
- Cost Efficiency: Performance per dollar
Conclusion
The GPU acceleration infrastructure is like having a supercomputer thatās being used as a space heater. A complete GPU stack exists but only 5% is utilized. With 10 days of integration work, we can achieve 10-100x performance improvements in critical paths, enabling more sophisticated models and strategies that could generate $1-1.9M in annual value through faster and better trading decisions.